feat: implemented errno, strtol. Started ustar. Reformatted headers and

code. Added some self-tests. Started prepwork for vfs.
This commit is contained in:
2021-03-14 21:14:22 +01:00
parent 586b8191b4
commit 77c8dca72a
39 changed files with 504 additions and 60 deletions

690
kernel/drivers/pci/ide.c Normal file
View File

@@ -0,0 +1,690 @@
//
// Created by rick on 03-02-21.
//
// https://wiki.osdev.org/PCI_IDE_Controller
#include <stdbool.h>
#include <stdlib.h>
#include <sys/types.h>
#include <stdio.h>
#include <myke/drivers/pci/ide.h>
#include <myke/debug/debug.h>
#include <myke/drivers/ports.h>
#include <myke/libk/kprint.h>
#include <myke/drivers/pci/pci.h>
#include <myke/libk/libk.h>
#include <myke/cpu/timer.h>
#include <myke/fs/blockdev.h>
#include <myke/tasks/locking.h>
#define ATA_SR_BSY 0x80 // Busy
#define ATA_SR_DRDY 0x40 // Drive ready
#define ATA_SR_DF 0x20 // Drive write fault
#define ATA_SR_DSC 0x10 // Drive seek complete
#define ATA_SR_DRQ 0x08 // Data request ready
#define ATA_SR_CORR 0x04 // Corrected data
#define ATA_SR_IDX 0x02 // Index
#define ATA_SR_ERR 0x01 // Error
#define ATA_ER_BBK 0x80 // Bad block
#define ATA_ER_UNC 0x40 // Uncorrectable data
#define ATA_ER_MC 0x20 // Media changed
#define ATA_ER_IDNF 0x10 // ID mark not found
#define ATA_ER_MCR 0x08 // Media change request
#define ATA_ER_ABRT 0x04 // Command aborted
#define ATA_ER_TK0NF 0x02 // Track 0 not found
#define ATA_ER_AMNF 0x01 // No address mark
#define ATA_CMD_READ_PIO 0x20
#define ATA_CMD_READ_PIO_EXT 0x24
#define ATA_CMD_READ_DMA 0xC8
#define ATA_CMD_READ_DMA_EXT 0x25
#define ATA_CMD_WRITE_PIO 0x30
#define ATA_CMD_WRITE_PIO_EXT 0x34
#define ATA_CMD_WRITE_DMA 0xCA
#define ATA_CMD_WRITE_DMA_EXT 0x35
#define ATA_CMD_CACHE_FLUSH 0xE7
#define ATA_CMD_CACHE_FLUSH_EXT 0xEA
#define ATA_CMD_PACKET 0xA0
#define ATA_CMD_IDENTIFY_PACKET 0xA1
#define ATA_CMD_IDENTIFY 0xEC
#define ATAPI_CMD_READ 0xA8
#define ATAPI_CMD_EJECT 0x1B
#define ATA_IDENT_DEVICETYPE 0
#define ATA_IDENT_CYLINDERS 2
#define ATA_IDENT_HEADS 6
#define ATA_IDENT_SECTORS 12
#define ATA_IDENT_SERIAL 20
#define ATA_IDENT_MODEL 54
#define ATA_IDENT_CAPABILITIES 98
#define ATA_IDENT_FIELDVALID 106
#define ATA_IDENT_MAX_LBA 120
#define ATA_IDENT_COMMANDSETS 164
#define ATA_IDENT_MAX_LBA_EXT 200
#define ATA_CAP_LBA 0x200
#define ATA_LBA28_MAX 0x10000000
#define ATA_HDDDEVSEL_CHS 0b00000000
#define ATA_HDDDEVSEL_LBA 0b01000000
#define ATA_HDDDEVSEL_DEFAULT 0b10100000
#define IDE_ATA 0x00
#define IDE_ATAPI 0x01
#define ATA_MASTER 0x00
#define ATA_SLAVE 0x01
// base
#define ATA_REG_DATA 0x00
#define ATA_REG_ERROR 0x01
#define ATA_REG_FEATURES 0x01
#define ATA_REG_SECCOUNT0 0x02
#define ATA_REG_LBA0 0x03
#define ATA_REG_LBA1 0x04
#define ATA_REG_LBA2 0x05
#define ATA_REG_HDDEVSEL 0x06
#define ATA_REG_COMMAND 0x07
#define ATA_REG_STATUS 0x07
// ??
#define ATA_REG_SECCOUNT1 0x12
#define ATA_REG_LBA3 0x13
#define ATA_REG_LBA4 0x14
#define ATA_REG_LBA5 0x15
// ctrl
#define ATA_REG_CONTROL 0x22
#define ATA_REG_ALTSTATUS 0x22
#define ATA_REG_DEVADDRESS 0x23
// Channels:
#define ATA_PRIMARY 0x00
#define ATA_SECONDARY 0x01
// Directions:
#define ATA_READ 0x00
#define ATA_WRITE 0x01
struct ide_channel_registers {
unsigned short base; // I/O Base.
unsigned short ctrl; // Control Base
unsigned short bmide; // Bus Master IDE
unsigned char nIEN; // nIEN (No Interrupt);
} channels[2];
unsigned char ide_buf[2048] = {0};
unsigned static char ide_irq_invoked = 0;
unsigned static char atapi_packet[12] = {0xA8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
struct ide_device {
unsigned char reserved; // 0 (Empty) or 1 (This Drive really exists).
unsigned char channel; // 0 (Primary Channel) or 1 (Secondary Channel).
unsigned char drive; // 0 (Master Drive) or 1 (Slave Drive).
unsigned short type; // 0: ATA, 1:ATAPI.
unsigned short signature; // Drive Signature
unsigned short capabilities;// Features.
unsigned int commandSets; // Command Sets Supported.
unsigned int size; // Size in Sectors.
unsigned char model[41]; // Model in string.
} ide_devices[4];
typedef struct {
uint8_t device_number: 2;
uint8_t print_error: 1;
} ide_block_device_info;
mutex_t *ide_lock = NULL;
uint8_t ide_read(uint8_t channel, uint8_t reg);
void ide_write(uint8_t channel, uint8_t reg, uint8_t data);
uint8_t ide_read(uint8_t channel, uint8_t reg) {
uint8_t result;
if (reg & 0x10) {
ide_write(channel, ATA_REG_CONTROL, 0x80 | channels[channel].nIEN);
result = port_byte_in(channels[channel].base + (reg & 0xF));
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
} else if (reg & 0x20) {
result = port_byte_in(channels[channel].ctrl + (reg & 0xF));
} else {
result = port_byte_in(channels[channel].base + reg);
}
// if (reg < 0x08)
// result = port_byte_in(channels[channel].base + reg - 0x00);
// else if (reg < 0x0C)
// result = port_byte_in(channels[channel].base + reg - 0x06);
// else if (reg < 0x0E)
// result = port_byte_in(channels[channel].ctrl + reg - 0x0A);
// else if (reg < 0x16)
// result = port_byte_in(channels[channel].bmide + reg - 0x0E); // todo this case is not handled in new code
// if (reg > 0x07 && reg < 0x0C)
// ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
return result;
}
void ide_write(uint8_t channel, uint8_t reg, uint8_t data) {
if (reg & 0x10) {
ide_write(channel, ATA_REG_CONTROL, 0x80 | channels[channel].nIEN);
port_byte_out(channels[channel].base + (reg & 0xF), data);
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
} else if (reg & 0x20) {
port_byte_out(channels[channel].ctrl + (reg & 0xF), data);
} else {
port_byte_out(channels[channel].base + reg, data);
}
// if (reg > 0x07 && reg < 0x0C)
// ide_write(channel, ATA_REG_CONTROL, 0x80 | channels[channel].nIEN);
// if (reg < 0x08)
// port_byte_out(channels[channel].base + reg - 0x00, data);
// else if (reg < 0x0C)
// port_byte_out(channels[channel].base + reg - 0x06, data);
// else if (reg < 0x0E)
// port_byte_out(channels[channel].ctrl + reg - 0x0A, data);
// else if (reg < 0x16)
// port_byte_out(channels[channel].bmide + reg - 0x0E, data); // todo this case is not handled
// if (reg > 0x07 && reg < 0x0C)
// ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
}
void ide_read_buffer(unsigned char channel, unsigned char reg, unsigned int *buffer, unsigned int quads) {
/* WARNING: This code contains a serious bug. The inline assembly trashes ES and
* ESP for all of the code the compiler generates between the inline
* assembly blocks.
*/
if (reg & 0x10) {
ide_write(channel, ATA_REG_CONTROL, 0x80 | channels[channel].nIEN);
port_double_word_in_repeat(channels[channel].base + (reg & 0xF), buffer, quads);
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
} else if (reg & 0x20) {
port_double_word_in_repeat(channels[channel].base + (reg & 0xF), buffer, quads);
} else {
port_double_word_in_repeat(channels[channel].base + reg, buffer, quads);
}
// if (reg > 0x07 && reg < 0x0C) {
// ide_write(channel, ATA_REG_CONTROL, 0x80 | channels[channel].nIEN);
// }
// this assembly is probably necessary when reading paging
// asm("pushw %es; movw %ds, %ax; movw %ax, %es" );
// if (reg < 0x08) {
// port_double_word_in_repeat(channels[channel].base + reg - 0x00, buffer, quads);
// } else if (reg < 0x0C) {
// port_double_word_in_repeat(channels[channel].base + reg - 0x06, buffer, quads);
// } else if (reg < 0x0E) {
// port_double_word_in_repeat(channels[channel].ctrl + reg - 0x0A, buffer, quads);
// } else if (reg < 0x16) {
// port_double_word_in_repeat(channels[channel].bmide + reg - 0x0E, buffer, quads);
// }
// asm("popw %es;");
// if (reg > 0x07 && reg < 0x0C) {
// ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN);
// }
}
unsigned char ide_polling(unsigned char channel, uint8_t advanced_check) {
// (I) Delay 400 nanosecond for BSY to be set:
// -------------------------------------------------
for (int i = 0; i < 4; i++)
ide_read(channel, ATA_REG_ALTSTATUS); // Reading the Alternate Status port wastes 100ns; loop four times.
// (II) Wait for BSY to be cleared:
// -------------------------------------------------
while (ide_read(channel, ATA_REG_STATUS) & ATA_SR_BSY); // Wait for BSY to be zero.
if (advanced_check) {
unsigned char state = ide_read(channel, ATA_REG_STATUS); // Read Status Register.
// (III) Check For Errors:
// -------------------------------------------------
if (state & ATA_SR_ERR)
return 2; // Error.
// (IV) Check If Device fault:
// -------------------------------------------------
if (state & ATA_SR_DF)
return 1; // Device Fault.
// (V) Check DRQ:
// -------------------------------------------------
// BSY = 0; DF = 0; ERR = 0 so we should check for DRQ now.
if ((state & ATA_SR_DRQ) == 0)
return 3; // DRQ should be set
}
return 0; // No Error.
}
unsigned char ide_print_error(unsigned int drive, unsigned char err) {
if (err == 0)
return err;
debug_backtrace(false);
kprint("IDE:");
if (err == 1) {
kprint("- Device Fault ");
err = 19;
} else if (err == 2) {
unsigned char st = ide_read(ide_devices[drive].channel, ATA_REG_ERROR);
if (st & ATA_ER_AMNF) {
kprint("- No Address Mark Found - ");
err = 7;
}
if (st & ATA_ER_TK0NF) {
kprint("- No Media or Media Error - ");
err = 3;
}
if (st & ATA_ER_ABRT) {
kprint("- Command Aborted - ");
err = 20;
}
if (st & ATA_ER_MCR) {
kprint("- No Media or Media Error - ");
err = 3;
}
if (st & ATA_ER_IDNF) {
kprint("- ID mark not Found - ");
err = 21;
}
if (st & ATA_ER_MC) {
kprint("- No Media or Media Error - ");
err = 3;
}
if (st & ATA_ER_UNC) {
kprint("- Uncorrectable Data Error - ");
err = 22;
}
if (st & ATA_ER_BBK) {
kprint("- Bad Sectors - ");
err = 13;
}
} else if (err == 3) {
kprint("- Reads Nothing - ");
err = 23;
} else if (err == 4) {
kprint("- Write Protected - ");
err = 8;
} else if (err & 0xF0) {
if (err == 0xF1) {
kprint("- Unsupported operation by driver - ");
} else {
kprint(" - Unknown driver error - ");
}
}
printf(" - [%s %s] %s\n",
((const char *[]) {"Primary", "Secondary"}[ide_devices[drive].channel]),
((const char *[]) {"Master", "Slave"}[ide_devices[drive].drive]),
&ide_devices[drive].model);
return err;
}
void ide_fix_bar(bar_info *bar, uint32_t default_address, uint32_t size) {
if (bar->address == 0x0) {
// no need to actually write ti back
bar->address = default_address;
bar->prefetchable = 0;
bar->type = 0;
bar->is_io_space = 1;
bar->size = size;
}
}
bool ide_pci_init_channels(pci_device *device) {
pci_config_write_byte(device->bus, device->slot, device->func, PCI_CONFIG_INTERRUPT_LINE, 0xFE);
if (pci_config_read_byte(device->bus, device->slot, device->func, PCI_CONFIG_INTERRUPT_LINE) == 0xFE) {
#ifdef IDE_ENABLE_INTERRUPT
#error "Interrupt not supported"
k_panics("NOT SUPPORTED");
#else
pci_config_write_byte(device->bus, device->slot, device->func, PCI_CONFIG_INTERRUPT_LINE,
PCI_INTERRUPT_LINE_DISABLED);
#endif
}
pci_init_bar(device, 0);
pci_init_bar(device, 1);
pci_init_bar(device, 2);
pci_init_bar(device, 3);
pci_init_bar(device, 4);
if (!device->bar0.present
|| !device->bar1.present
|| !device->bar2.present
|| !device->bar3.present
|| !device->bar4.present) {
k_panics("IDE Missing bars");
return false;
}
ide_fix_bar(&device->bar0, 0x1F0, 8);
ide_fix_bar(&device->bar1, 0x3F6, 4);
ide_fix_bar(&device->bar2, 0x170, 8);
ide_fix_bar(&device->bar3, 0x376, 4);
channels[ATA_PRIMARY].base = device->bar0.address;
channels[ATA_PRIMARY].ctrl = device->bar1.address;
channels[ATA_SECONDARY].base = device->bar2.address;
channels[ATA_SECONDARY].ctrl = device->bar3.address;
channels[ATA_PRIMARY].bmide = device->bar4.address + 0; // Bus Master IDE
channels[ATA_SECONDARY].bmide = device->bar4.address + 8; // Bus Master IDE
return true;
}
uint8_t
ide_block_dev_access(const block_device_t *device, uint8_t direction, uint32_t lba, uint8_t sectors, void *target) {
ide_block_device_info *info = device->device_info;
uint8_t result = ide_access(direction, info->device_number, lba, sectors, target);
if (result != 0) {
if (info->print_error) {
ide_print_error(info->device_number, result);
}
return BLOCK_DEV_ACCESS_ERR;
}
return BLOCK_DEV_ACCESS_OK;
}
void ide_register_block_devices() {
for (int i = 0; i < 3; ++i) {
if (!ide_devices[i].reserved) {
continue;
}
ide_block_device_info *info = malloc(sizeof(ide_block_device_info)); // todo free for this one
info->device_number = i;
info->print_error = 1;
block_device_t device = {
.flags.present = 1,
.flags.root_device = 1,
.device_info = info,
.num_lba = ide_devices[i].size,
.block_size = 0x200,
.access = ide_block_dev_access,
};
sprintf(device.identifier, "ide%d", i);
block_dev_register(&device);
break;
}
}
uint8_t used ide_pci_validate(const pci_device *device) {
if (device->class != PCI_CLASS_MASS_STORAGE
|| device->subclass != PCI_SUB_CLASS_IDE
|| (device->programInterface != 0x8A && device->programInterface != 0x80)) {
return PCI_VALIDATE_FAIL;
}
// todo other validations
return PCI_VALIDATE_OK;
}
uint8_t used ide_pci_initialize(pci_device *device) {
if (!ide_pci_init_channels(device)) {
return PCI_INIT_FAIL;
}
if (ide_lock != NULL) {
k_panics("IDE already initialized\n");
}
ide_lock = mutex_create();
mutex_acquire(ide_lock);
// disable IRQ
ide_write(ATA_PRIMARY, ATA_REG_CONTROL, 2);
ide_write(ATA_SECONDARY, ATA_REG_CONTROL, 2);
int count = 0;
// 3- Detect ATA-ATAPI Devices:
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
unsigned char err = 0, type = IDE_ATA, status;
ide_devices[count].reserved = 0; // Assuming that no drive here.
// (I) Select Drive:
ide_write(i, ATA_REG_HDDEVSEL, 0xA0 | (j << 4)); // Select Drive.
sleep(1); // Wait 1ms for drive select to work.
// (II) Send ATA Identify Command:
ide_write(i, ATA_REG_COMMAND, ATA_CMD_IDENTIFY);
sleep(1); // This function should be implemented in your OS. which waits for 1 ms.
// it is based on System Timer Device Driver.
// (III) Polling:
if (ide_read(i, ATA_REG_STATUS) == 0) continue; // If Status = 0, No Device.
while (1) {
status = ide_read(i, ATA_REG_STATUS);
if ((status & ATA_SR_ERR)) {
err = 1;
break;
} // If Err, Device is not ATA.
if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRQ)) break; // Everything is right.
}
// (IV) Probe for ATAPI Devices:
if (err != 0) {
unsigned char cl = ide_read(i, ATA_REG_LBA1);
unsigned char ch = ide_read(i, ATA_REG_LBA2);
if (cl == 0x14 && ch == 0xEB) {
type = IDE_ATAPI;
} else if (cl == 0x69 && ch == 0x96) {
type = IDE_ATAPI;
} else {
continue; // Unknown Type (may not be a device).
}
ide_write(i, ATA_REG_COMMAND, ATA_CMD_IDENTIFY_PACKET);
sleep(1);
}
// (V) Read Identification Space of the Device:
ide_read_buffer(i, ATA_REG_DATA, (unsigned int *) ide_buf, 128);
// (VI) Read Device Parameters:
ide_devices[count].reserved = 1;
ide_devices[count].type = type;
ide_devices[count].channel = i;
ide_devices[count].drive = j;
ide_devices[count].signature = *((unsigned short *) (ide_buf + ATA_IDENT_DEVICETYPE));
ide_devices[count].capabilities = *((unsigned short *) (ide_buf + ATA_IDENT_CAPABILITIES));
ide_devices[count].commandSets = *((unsigned int *) (ide_buf + ATA_IDENT_COMMANDSETS));
// (VII) Get Size:
if (ide_devices[count].commandSets & (1 << 26))
// Device uses 48-Bit Addressing:
ide_devices[count].size = *((unsigned int *) (ide_buf + ATA_IDENT_MAX_LBA_EXT));
else
// Device uses CHS or 28-bit Addressing:
ide_devices[count].size = *((unsigned int *) (ide_buf + ATA_IDENT_MAX_LBA));
// (VIII) String indicates model of device (like Western Digital HDD and SONY DVD-RW...):
for (int k = 0; k < 40; k += 2) {
ide_devices[count].model[k] = ide_buf[ATA_IDENT_MODEL + k + 1];
ide_devices[count].model[k + 1] = ide_buf[ATA_IDENT_MODEL + k];
}
ide_devices[count].model[40] = 0; // Terminate String.
count++;
}
}
mutex_release(ide_lock);
ide_register_block_devices();
return PCI_INIT_OK;
}
void ide_print_devices() {
for (int i = 0; i < 4; i++) {
if (ide_devices[i].reserved == 1) {
printf("Drive %d: %s Drive %dMB - %s\n",
i,
((const char *[]) {"ATA", "ATAPI"}[ide_devices[i].type]),
ide_devices[i].size / 1024 / 2,
ide_devices[i].model);
} else {
printf("Drive %d disconnected\n", i);
}
}
}
uint8_t ide_read_ata_access(uint8_t direction, uint8_t drive, uint32_t lba, uint8_t numsects, void *target) {
uint8_t lba_mode /* 0: CHS, 1:LBA28, 2: LBA48 */, dma /* 0: No DMA, 1: DMA */, cmd;
uint8_t lba_io[6];
uint8_t channel = ide_devices[drive].channel;
uint8_t slavebit = ide_devices[drive].drive;
uint32_t bus = channels[channel].base;
uint32_t words = 256;
uint16_t cyl, i;
uint8_t head, sect, err;
ide_write(channel, ATA_REG_CONTROL, channels[channel].nIEN = (ide_irq_invoked = 0x0) + 0x02);
// setup LBA data
if (lba >= ATA_LBA28_MAX) { // Sure Drive should support LBA in this case, or you are
// giving a wrong LBA.
// LBA48:
lba_mode = 2;
lba_io[0] = (lba & 0x000000FF) >> 0;
lba_io[1] = (lba & 0x0000FF00) >> 8;
lba_io[2] = (lba & 0x00FF0000) >> 16;
lba_io[3] = (lba & 0xFF000000) >> 24;
lba_io[4] = 0; // LBA28 is integer, so 32-bits are enough to access 2TB.
lba_io[5] = 0; // LBA28 is integer, so 32-bits are enough to access 2TB.
head = 0; // Lower 4-bits of HDDEVSEL are not used here.
} else if (ide_devices[drive].capabilities & ATA_CAP_LBA) { // Drive supports LBA?
// LBA28:
lba_mode = 1;
lba_io[0] = (lba & 0x00000FF) >> 0;
lba_io[1] = (lba & 0x000FF00) >> 8;
lba_io[2] = (lba & 0x0FF0000) >> 16;
lba_io[3] = 0; // These Registers are not used here.
lba_io[4] = 0; // These Registers are not used here.
lba_io[5] = 0; // These Registers are not used here.
head = (lba & 0xF000000) >> 24;
} else {
// CHS:
lba_mode = 0;
sect = (lba % 63) + 1;
cyl = (lba + 1 - sect) / (16 * 63);
lba_io[0] = sect;
lba_io[1] = (cyl >> 0) & 0xFF;
lba_io[2] = (cyl >> 8) & 0xFF;
lba_io[3] = 0;
lba_io[4] = 0;
lba_io[5] = 0;
head = (lba + 1 - sect) % (16 * 63) / (63); // Head number is written to HDDEVSEL lower 4-bits.
}
// check if DMA is available
dma = 0; // maybe later
// wait for the drive to have time for us
while (ide_read(channel, ATA_REG_STATUS) & ATA_SR_BSY) {}
if (lba_mode == 0) {
ide_write(channel,
ATA_REG_HDDEVSEL,
ATA_HDDDEVSEL_DEFAULT | ATA_HDDDEVSEL_CHS | (slavebit << 4) | head); // Drive & CHS.
} else {
ide_write(channel,
ATA_REG_HDDEVSEL,
ATA_HDDDEVSEL_DEFAULT | ATA_HDDDEVSEL_LBA | (slavebit << 4) | head); // Drive & LBA
}
// store data
if (lba_mode == 2) {
ide_write(channel, ATA_REG_SECCOUNT1, 0);
ide_write(channel, ATA_REG_LBA3, lba_io[3]);
ide_write(channel, ATA_REG_LBA4, lba_io[4]);
ide_write(channel, ATA_REG_LBA5, lba_io[5]);
}
ide_write(channel, ATA_REG_SECCOUNT0, numsects);
ide_write(channel, ATA_REG_LBA0, lba_io[0]);
ide_write(channel, ATA_REG_LBA1, lba_io[1]);
ide_write(channel, ATA_REG_LBA2, lba_io[2]);
// pick correct ccommand
if (lba_mode == 0 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO;
if (lba_mode == 1 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO;
if (lba_mode == 2 && dma == 0 && direction == 0) cmd = ATA_CMD_READ_PIO_EXT;
// if (lba_mode == 0 && dma == 1 && direction == 0) cmd = ATA_CMD_READ_DMA;
// if (lba_mode == 1 && dma == 1 && direction == 0) cmd = ATA_CMD_READ_DMA;
// if (lba_mode == 2 && dma == 1 && direction == 0) cmd = ATA_CMD_READ_DMA_EXT;
if (lba_mode == 0 && dma == 0 && direction == 1) cmd = ATA_CMD_WRITE_PIO;
if (lba_mode == 1 && dma == 0 && direction == 1) cmd = ATA_CMD_WRITE_PIO;
if (lba_mode == 2 && dma == 0 && direction == 1) cmd = ATA_CMD_WRITE_PIO_EXT;
// if (lba_mode == 0 && dma == 1 && direction == 1) cmd = ATA_CMD_WRITE_DMA;
// if (lba_mode == 1 && dma == 1 && direction == 1) cmd = ATA_CMD_WRITE_DMA;
// if (lba_mode == 2 && dma == 1 && direction == 1) cmd = ATA_CMD_WRITE_DMA_EXT;
ide_write(channel, ATA_REG_COMMAND, cmd); // Send the Command.
void *cur_addr = target;
// read response
if (dma) {
if (direction == 0);
// DMA Read.
else;
// DMA Write.
} else {
if (direction == 0) {
// PIO Read.
for (i = 0; i < numsects; i++) {
if ((err = ide_polling(channel, 1))) {
ide_print_error(drive, err);
return err; // Polling, set error and exit if there is.
}
port_word_in_repeat(bus, cur_addr, words);
cur_addr += (words * 2);
}
} else {
// PIO Write.
for (i = 0; i < numsects; i++) {
ide_polling(channel, 0); // Polling.
port_word_out_repeat(bus, cur_addr, words);
cur_addr += (words * 2);
}
ide_write(channel, ATA_REG_COMMAND, (char[]) {ATA_CMD_CACHE_FLUSH,
ATA_CMD_CACHE_FLUSH,
ATA_CMD_CACHE_FLUSH_EXT}[lba_mode]);
ide_polling(channel, 0); // Polling.
}
}
return 0;
}
uint8_t ide_access(uint8_t direction, uint8_t drive, uint32_t lba, uint8_t numsects, void *target) {
if (drive > 3
|| ide_devices[drive].reserved == 0
|| ide_devices[drive].type == IDE_ATAPI) {
return 0xF1;
}
mutex_acquire(ide_lock);
uint8_t result = ide_read_ata_access(direction, drive, lba, numsects, target);
mutex_release(ide_lock);
return result;
}
PCI_DRIVER(900) = {
.name = "pci-ide",
.description = "Default PCI IDE Driver",
.validatable = true,
.initialisable = true,
.match.class = PCI_CLASS_MASS_STORAGE,
.match.subclass = PCI_SUB_CLASS_IDE,
.mask.class = true,
.mask.subclass = true,
.validate = ide_pci_validate,
.initialize = ide_pci_initialize,
};

383
kernel/drivers/pci/pci.c Normal file
View File

@@ -0,0 +1,383 @@
//
// Created by rick on 02-02-21.
//
// https://wiki.osdev.org/PCI
#include <sys/types.h>
#include <stdio.h>
#include <myke/drivers/pci/pci.h>
#include <myke/drivers/ports.h>
#include <myke/libk/libk.h>
#ifdef ENABLE_PCIPP
#include <myke/drivers/pci/pci_devices.h>
#endif
#define PCI_CONFIG_ENABLE (1 << 31)
#define PCI_CONFIG_SHIFT_BUS_NUMBER 16
#define PCI_CONFIG_SHIFT_DEV_NUMBER 11
#define PCI_CONFIG_SHIFT_FUNC_NUMBER 8
#define PCI_CONFIG_LINE_0 0x00
#define PCI_CONFIG_LINE_1 0x01
#define PCI_CONFIG_LINE_2 0x08
#define PCI_CONFIG_LINE_3 0x0C
#define MAX_PCI_DRIVERS 64
#define MAX_PCI_DEVICES 64
#define MASK_BAR_IOSPACE 0xFFFFFFFC
#define MASK_BAR_MEMSPACE 0xFFFFFFF0
//const pci_driver *pci_drivers[MAX_PCI_DRIVERS];
extern struct pci_driver __start_pci_driver[];
extern struct pci_driver __stop_pci_driver[];
#define NUM_DRIVERS ((size_t)(__stop_pci_driver - __start_pci_driver))
#define DRIVER(i) ((__start_pci_driver) + (i))
int last_pci_device_index = 0;
pci_device pci_devices[MAX_PCI_DEVICES];
void pci_check_bus(uint8_t bus);
uint8_t used pci_secondary_bus_use(const pci_device *device) {
uint8_t secondary_bus = pci_config_read_byte(device->bus, device->slot, device->func,
PCI_CONFIG_SECONDARY_BUS_NUMBER);
pci_check_bus(secondary_bus);
return PCI_USE_OK;
}
uint32_t pci_config_address(uint8_t bus, uint8_t slot, uint8_t func, uint8_t offset) {
return PCI_CONFIG_ENABLE
| ((uint32_t) bus << PCI_CONFIG_SHIFT_BUS_NUMBER)
| ((uint32_t) slot << PCI_CONFIG_SHIFT_DEV_NUMBER)
| ((uint32_t) func << PCI_CONFIG_SHIFT_FUNC_NUMBER)
| (offset & 0xFC);
}
uint32_t pci_config_read_double_word(uint8_t bus, uint8_t slot, uint8_t func, uint8_t offset) {
uint32_t address = pci_config_address(bus, slot, func, offset);
port_double_word_out(PORT_PCI_CONFIG_ADDRESS, address);
return port_double_word_in(PORT_PCI_CONFIG_DATA);
}
uint16_t pci_config_read_word(uint8_t bus, uint8_t slot, uint8_t func, uint8_t offset) {
uint32_t address = pci_config_address(bus, slot, func, offset);
port_double_word_out(PORT_PCI_CONFIG_ADDRESS, address);
return port_double_word_in(PORT_PCI_CONFIG_DATA) >> ((offset & 2) * 8) & 0xFFFF;
}
uint8_t pci_config_read_byte(uint8_t bus, uint8_t slot, uint8_t func, uint8_t offset) {
uint32_t address = pci_config_address(bus, slot, func, offset);
port_double_word_out(PORT_PCI_CONFIG_ADDRESS, address);
return port_double_word_in(PORT_PCI_CONFIG_DATA) >> ((offset & 0b11) * 8) & 0xFF;
}
void pci_config_write_double_word(uint8_t bus, uint8_t slot, uint8_t func, uint8_t offset, uint32_t value) {
uint32_t address = pci_config_address(bus, slot, func, offset);
port_double_word_out(PORT_PCI_CONFIG_ADDRESS, address);
port_double_word_out(PORT_PCI_CONFIG_DATA, value);
}
void pci_config_write_word(uint8_t bus, uint8_t slot, uint8_t func, uint8_t offset, uint16_t value) {
uint32_t address = pci_config_address(bus, slot, func, offset);
port_double_word_out(PORT_PCI_CONFIG_ADDRESS, address);
port_word_out(PORT_PCI_CONFIG_DATA, value);
}
void pci_config_write_byte(uint8_t bus, uint8_t slot, uint8_t func, uint8_t offset, uint8_t value) {
uint32_t address = pci_config_address(bus, slot, func, offset);
port_double_word_out(PORT_PCI_CONFIG_ADDRESS, address);
port_byte_out(PORT_PCI_CONFIG_DATA, value);
}
pci_command_register_t pci_get_config(pci_device *device) {
pci_command_register_t status;
status.value = pci_config_read_word(device->bus, device->slot, device->func, PCI_CONFIG_COMMAND);
return status;
}
void pci_set_status(pci_device *device, pci_status_register_t status) {
pci_config_write_word(device->bus, device->slot, device->func, PCI_CONFIG_STATUS, status.value);
}
pci_status_register_t pci_get_status(pci_device *device) {
pci_status_register_t status;
status.value = pci_config_read_word(device->bus, device->slot, device->func, PCI_CONFIG_STATUS);
return status;
}
uint16_t pci_get_vendor_id(uint8_t bus, uint8_t slot, uint8_t func) {
return pci_config_read_word(bus, slot, func, PCI_CONFIG_VENDOR_ID);
}
uint8_t pci_get_header_type(uint8_t bus, uint8_t slot, uint8_t func) {
return pci_config_read_byte(bus, slot, func, PCI_CONFIG_HEADER_TYPE);
}
void pci_pick_driver(pci_device *device) {
for (size_t i = 0; i < NUM_DRIVERS; ++i) {
struct pci_driver *driver = DRIVER(i);
if (driver == NULL) {
continue;
}
if (driver->mask.class && driver->match.class != device->class) {
continue;
}
if (driver->mask.subclass && driver->match.subclass != device->subclass) {
continue;
}
if (driver->mask.interface && driver->match.interface != device->programInterface) {
continue;
}
if (driver->mask.vendor && driver->match.vendor != device->vendorId) {
continue;
}
if (driver->mask.device && driver->match.device != device->deviceId) {
continue;
}
if (driver->direct_use) {
if (driver->use(device) != PCI_USE_OK) {
continue;
}
} else if (driver->validatable) {
if (driver->validate(device) != PCI_VALIDATE_OK) {
continue;
}
} else {
continue;
}
device->pci_driver = DRIVER(i);
}
}
void pci_check_function(uint8_t bus, uint8_t slot, uint8_t func) {
pci_devices[last_pci_device_index].bus = bus;
pci_devices[last_pci_device_index].slot = slot;
pci_devices[last_pci_device_index].func = func;
pci_devices[last_pci_device_index].config_line_0 = pci_config_read_double_word(bus, slot, func, PCI_CONFIG_LINE_0);
pci_devices[last_pci_device_index].config_line_2 = pci_config_read_double_word(bus, slot, func, PCI_CONFIG_LINE_2);
pci_devices[last_pci_device_index].config_line_3 = pci_config_read_double_word(bus, slot, func, PCI_CONFIG_LINE_3);
pci_devices[last_pci_device_index].device_state.present = 1;
last_pci_device_index++;
pci_pick_driver(&pci_devices[last_pci_device_index - 1]);
// todo do something with the function
}
void pci_check_device(uint8_t bus, uint8_t device) {
uint8_t function = 0;
uint16_t vendor_id = pci_get_vendor_id(bus, device, function);
if (vendor_id == 0xFFFF) return;
pci_check_function(bus, device, function);
uint8_t header_type = pci_get_header_type(bus, device, function);
if (header_type & PCI_HEADER_TYPE_MULTI_FUNC) {
for (function = 1; function < 8; ++function) {
if (pci_get_vendor_id(bus, device, function) != 0xFFFF) {
pci_check_function(bus, device, function);
}
}
}
}
void pci_check_bus(uint8_t bus) {
for (int device = 0; device < 32; ++device) {
pci_check_device(bus, device);
}
}
void pci_scan() {
if (last_pci_device_index != 0) {
k_panics("Can only scan once!");
}
uint8_t header_type = pci_get_header_type(0, 0, 0);
if (header_type & PCI_HEADER_TYPE_MULTI_FUNC) {
// multiple pci host controllers
for (int function = 0; function < 8; ++function) {
pci_check_bus(function);
}
} else {
pci_check_bus(0);
}
}
void pci_init_drivers() {
for (int device_index = 0; device_index < MAX_PCI_DEVICES; ++device_index) {
if (!pci_devices[device_index].device_state.present) {
continue;
}
if (pci_devices[device_index].driver_state.initialized) {
continue; // already done
}
if (pci_devices[device_index].pci_driver == NULL) {
continue; // no driver found
}
if (pci_devices[device_index].pci_driver->initialisable) {
pci_devices[device_index].pci_driver->initialize(&pci_devices[device_index]);
}
pci_devices[device_index].driver_state.initialized = 1;
}
}
void pci_print_info() {
for (int i = 0; i < last_pci_device_index; ++i) {
printf("PCI BSF: %2x/%2x/%2x, CSI: %2x/%2x/%2x, V/D: %4x/%4x, driver: %s\n",
pci_devices[i].bus, pci_devices[i].slot, pci_devices[i].func,
pci_devices[i].class, pci_devices[i].subclass, pci_devices[i].programInterface,
pci_devices[i].vendorId, pci_devices[i].deviceId,
(pci_devices[i].pci_driver == NULL ? "none" : pci_devices[i].pci_driver->name));
}
}
void pci_dump_caps_internal(pci_device *device) {
if (pci_devices->headerType >= 0x02) {
printf("\tNot supported for PCI-to-CardBus bridge\n");
return;
}
if (!pci_get_status(device).status.capabilities_list) {
printf("\tNo caps\n");
return;
}
uint8_t cap_ptr = pci_config_read_byte(device->bus, device->slot, device->func, PCI_CONFIG_CAP_POINTER);
printf("\t%x\n", cap_ptr);
// todo traverse
}
void pci_dump_caps() {
for (int i = 0; i < last_pci_device_index; ++i) {
printf("PCI BSF: %2x/%2x/%2x, CSI: %2x/%2x/%2x, V/D: %4x/%4x, driver: %s\n",
pci_devices[i].bus, pci_devices[i].slot, pci_devices[i].func,
pci_devices[i].class, pci_devices[i].subclass, pci_devices[i].programInterface,
pci_devices[i].vendorId, pci_devices[i].deviceId,
(pci_devices[i].pci_driver == NULL ? "none" : pci_devices[i].pci_driver->name));
pci_dump_caps_internal(&pci_devices[i]);
}
}
#ifdef ENABLE_PCIPP
void pci_pretty_print() {
for (int i = 0; i < last_pci_device_index; ++i) {
char *class = NULL;
char *subclass = NULL;
char *function = NULL;
pci_device_info *class_info = NULL;
pci_device_info *subclass_info = NULL;
pci_device_info *function_info = NULL;
pci_device_info *current = pci_root_info;
while (current->name != NULL) {
if (current->code == pci_devices[i].class) {
class = current->name;
class_info = current;
break;
}
current = current + 1;
}
if (class_info != NULL && class_info->sub != NULL) {
current = class_info->sub;
while (current->name != NULL) {
if (current->code == pci_devices[i].subclass) {
subclass = current->name;
subclass_info = current;
break;
}
current = current + 1;
}
}
if (subclass_info != NULL && subclass_info->sub != NULL) {
current = subclass_info->sub;
while (current->name != NULL) {
if (current->code == pci_devices[i].programInterface) {
function = current->name;
function_info = current;
break;
}
current = current + 1;
}
}
printf("PCI BSF: %2x/%2x/%2x %s %s %s\n",
pci_devices[i].bus, pci_devices[i].slot, pci_devices[i].func,
class, subclass, function);
}
}
#endif
void pci_init_bar(pci_device *device, uint8_t bar_index) {
if (device->headerType != 0x00) {
k_panics("Only header 0x00 supported for now");
return;
}
uint8_t offset = 0;
bar_info *bar;
switch (bar_index) {
case 0:
offset = PCI_CONFIG_BAR0;
bar = &device->bar0;
break;
case 1:
offset = PCI_CONFIG_BAR1;
bar = &device->bar1;
break;
case 2:
offset = PCI_CONFIG_BAR2;
bar = &device->bar2;
break;
case 3:
offset = PCI_CONFIG_BAR3;
bar = &device->bar3;
break;
case 4:
offset = PCI_CONFIG_BAR4;
bar = &device->bar4;
break;
case 5:
offset = PCI_CONFIG_BAR5;
bar = &device->bar5;
break;
default:
k_panics("Bar index too high");
return;
}
uint32_t original_address = pci_config_read_double_word(device->bus, device->slot, device->func, offset);
pci_config_write_double_word(device->bus, device->slot, device->func, offset, 0xFFFFFFFF);
uint32_t masked_size = pci_config_read_double_word(device->bus, device->slot, device->func, offset);
if (original_address & 0x1) {
// IO Space
bar->size = ~(masked_size & MASK_BAR_IOSPACE) + 1;
bar->address = original_address & MASK_BAR_IOSPACE;
bar->is_io_space = 1;
} else {
// Memory space
bar->size = ~(masked_size & MASK_BAR_MEMSPACE) + 1;
bar->address = original_address & 0xFFFFFFF0;
bar->is_io_space = 0;
bar->type = (original_address & 0b110) >> 1;
bar->prefetchable = (original_address & 0b1000) >> 3;
}
// todo identify conflicts, move to different address
pci_config_write_double_word(device->bus, device->slot, device->func, offset, original_address);
bar->present = 1;
}
// internal drivers
PCI_DRIVER(0) = {
.name = "pci-secondary-bus",
.description = "A PCI bus connected to the primary bus",
.match.class = PCI_CLASS_BRIDGE,
.match.subclass = PCI_SUB_CLASS_PCI_PCI_BRIDGE_4,
.mask.class = true,
.mask.subclass = true,
.direct_use = true,
.use = pci_secondary_bus_use,
};
// todo https://wiki.osdev.org/Universal_Serial_Bus if i dare