from io import BytesIO import os.path from typing import Optional import configparser import cv2 from PIL import Image FACE_DATA = next(filter(os.path.exists, [ '/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml', '/usr/share/opencv4/haarcascades/haarcascade_frontalface_default.xml', ])) face_cascade = cv2.CascadeClassifier(FACE_DATA) def get_rotate_value(input_value): if input_value == '0': return None if input_value == '90': return cv2.ROTATE_90_CLOCKWISE if input_value == '-90' or input_value == '270': return cv2.ROTATE_90_COUNTERCLOCKWISE if input_value == '180': return cv2.ROTATE_180 raise ValueError(f"Unsupported rotation value {input_value!r}") class Camera: capture: cv2.VideoCapture def __init__(self): self.capture = cv2.VideoCapture(0) parser = configparser.ConfigParser() parser.read('config.ini') self.config = parser['camera'] self.rotate = get_rotate_value(self.config['rotate']) def get_image(self) -> Optional[bytes]: return_code, image = self.capture.read() if not return_code: return None if self.rotate is not None: image = cv2.rotate(image, self.rotate) image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(image_gray, 1.3, 5) for (x, y, w, h) in faces: image = cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2) image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) jpg = Image.fromarray(image_rgb) byte_stream = BytesIO() jpg.save(byte_stream, 'JPEG') return bytes(byte_stream.getbuffer())